	Week 1 - Week 3	Week 4 - Week 8	Week 9 - Week 12		Week 13 - Week 15
	Place Value	Addition \& Subtraction	Multiplication \& Division A		Consolidation
	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Represent numbers to 100 Step 2 Partition numbers to 100 Step 3 Number line to 100 Step 4 Hundreds Step 5 Represent numbers to 1,000 Step 6 Partition numbers to 1,000 Step 7 Flexible partitioning of numbers to 1,000 Step 8 Hundreds, tens and ones Step 9 Find 1,10 or 100 more or less Step 10 Number line to 1,000 Step 11 Estimate on a number line to 1,000 Step 12 Compare numbers to 1,000 Step 13 Order numbers to 1,000 Step 14 Count in 50s Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Apply number bonds within 10 Step 2 Add and subtract 1 s Step 3 Add and subtract 10s Step 4 Add and subtract 100s Step 5 Spot the pattern Step 6 Add 1s across a 10 Step 7 Add 10 s across a 100 Step 8 Subtract 1s across a 10 Step 9 Subtract 10 s across a 100 Step 10 Make connections Step 11 Add two numbers (no exchange) Step 12 Subtract two numbers (no exchange) Step 13 Add two numbers (across a 10) Step 14 Add two numbers (across a 100) Step 15 Subtract two numbers (across a 10) Step 16 Subtract two numbers (across a 100 Step 17 Add 2-digit and 3-digit numbers Step 18 Subtract a 2-digit number from a 3-digit number Step 19 Complements to 100 Step 20 Estimate answers Step 21 Inverse operations Step 22 Make decisions Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Multiplication - equal groups Step 2 Use arrays Step 3 Multiples of 2 Step 4 Multiples of 5 and 10 Step 5 Sharing and grouping Step 6 Multiply by 3 Step 7 Divide by 3 Step 8 The 3 times-table Step 9 Multiply by 4 Step 10 Divide by 4 Step 11 The 4 times-table Step 12 Multiply by 8 Step 13 Divide by 8 Step 14 The 8 times-table Step 15 The 2, 4 and 8 times-tables Y3 POST ASSESSMENT and ADDRESS GAPS		Y3 Autumn Term Assessment
	Identify, represent and estimate numbers using different representations Recognise the place value of each digit in a 3-digit number (hundreds, tens, ones) Count from zero in multiples of 4, 8,50 and 100; find 10 or 100 more or less than a given number Count from zero in multiples of $4,8,50$ and 100 Read and write numbers up to 1,000 in numerals and word Compare and order numbers up to $1,000 \mathrm{~s}$	Add and subtract numbers mentally, including: - a 3-digit number and ones - a 3-digit number and tens - a 3-digit number and hundreds Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction Estimate the answer to a calculation and use inverse operations to check answers	Show that multiplication of two numbers can be done and division on one number by another cannot (Y2) Count in steps of 2,3 and 5 from 0 , and in 10 s from any backward (Y2) Recall and use multiplication and division facts for the 2,5 tables, including recognising odd and even numbers (Y2) Recall and use multiplication and division facts for the 3 , tables Write and calculate mathematical statements for multip the multiplication tables that they know, including for 2 numbers, using mental and progressing to formal written	der (commutative) , forward and 10 multiplication 8 multiplication and division using mbers times 1-digit ds	
	Engage with mathematical activities and problems, making links and moving between different representations (concrete, pictorial, abstract). Independently choose to scaffold thinking using concrete, pictorial or abstract representations, if required. Independently choose to represent thinking using concrete, pictorial or abstract representations, as appropriate. Independently find an efficient way to solve a range of problems. Independently work systematically. Independently find possibilities using patterns spotted to support. Independently check and improve work (e.g. look for other possibilities, repeats, missing answers, errors and ways to improve). Pattern spot and predict what will come next in a pattern/sequence (numbers, shape or spatial). Independently investigate conjectures and provide examples and counter-examples. When they have solved a problem, pose a similar problem for a peer.		For all mathematical concepts, ideas and techniques: Represent it in a variety of ways (e.g. using concrete materials, pictures and symbols - the CPA approach). Make up his or her own examples (and non-examples) of it. See connections between it and other facts or ideas. Recognise it in new situations and contexts. Make use of it in various ways, including in new situations.	Solve problems of greater complexity (i.e. where the approach is not immediately obvious), demonstrating creativity and imagination. Independently explore and investigate mathematical contexts and structures.	
-	Provide a convinced argument. Reflect on others' convinced explanations and use this to improve their work. Edit and improve their own and a peer's convinced explanation. Investigate 'what if?' questions. Create 'what if?' questions.		Describe it in his or her own words. Explain it to someone else.	Communicate results clearly and systematically explain and generalise the mathematics.	

Year 3 Spring Term White Rose Planning

	Week 1 - Week 3	Week 4 - Week 5		Week 6 - Week 8	Week 9 - Week 11		Week 11
	Multiplication \& Division B	Measurement (length \& perimeter)		Fractions	Measurement (mass \& capacity)		Consolidation
	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Multiples of 10 Step 2 Related calculations Step 3 Reasoning about multiplication Step 4 Multiply a 2-digit number by a 1-digit number - no exchange Step 5 Multiply a 2-digit number by a 1-digit number - with exchange Step 6 Link multiplication and division Step 7 Divide a 2-digit number by a 1-digit number - no exchange Step 8 Divide a 2-digit number by a 1-digit number - flexible partitioning Step 9 Divide a 2-digit number by a 1-digit number - with remainders Step 10 Scaling Step 11 How many ways? Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Measure in metres and centimetres Step 2 Measure in millimetres Step 3 Measure in centimetres and millimetres Step 4 Metres, centimetres and millimetres Step 5 Equivalent lengths (metres and centimetres) Step 6 Equivalent lengths (centimetres and millimetres) Step 7 Compare lengths Step 8 Add lengths Step 9 Subtract lengths Step 10 What is perimeter? Step 11 Measure perimeter Step 12 Calculate perimeter Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-A Step 1 fractions Step 2 C Step 3 fractions Step 4 Step 5 C Step 6 Fr Step 7 Fr Step 8 Co Step 9 Eq Step 10 Y3 POST	SESSMENT and ADDRESS GAPS erstand the denominators of unit pare and order unit fractions erstand the numerators of non-unit erstand the whole pare and order non-unit fractions tions and scales tions on a number line in in fractions on a number line valent fractions on a number line uivalent fractions as bar models SESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT Step 1 Use scales Step 2 Measure mas Step 3 Measure mas Step 4 Equivalent ma Step 5 Compare mas Step 6 Add and subtr Step 7 Measure capa Step 8 Measure capa millilitres Step 9 Equivalent cap and millilitres) Step 10 Compare cap Step 11 Add and sub Y3 POST ASSESSMEN	ms grams and grams lograms and grams) S volume in millilitres volume in litres and and volumes (litres and volume pacity and volume ADDRESS GAPS	Y3 Spring Term Assessment
	Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers (Y 2) Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($1 / \mathrm{ml}$) Measure the perimeter of simple 2-D shapes	Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators Compare and order unit fractions, and fractions with the same denominators Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity ($1 / \mathrm{ml}$) Recognise and show, using diagrams, equivalent fractions with small denominators		Measure, compare, add and subtract: lengths $(\mathrm{m} / \mathrm{cm} / \mathrm{mm})$; mass (kg / g); volume/capacity ($1 / \mathrm{ml}$)		
	Engage with mathematical activities and problems, making links and moving between different representations (concrete, pictorial, abstract). Independently choose to scaffold thinking using concrete, pictorial or abstract representations, if required. Independently choose to represent thinking using concrete, pictorial or abstract representations, as appropriate. Independently find an efficient way to solve a range of problems. Independently work systematically. Independently find possibilities using patterns spotted to support. Independently check and improve work (e.g. look for other possibilities, repeats, missing answers, errors and ways to improve). Pattern spot and predict what will come next in a pattern/sequence (numbers, shape or spatial). Independently investigate conjectures and provide examples and counter-examples. When they have solved a problem, pose a similar problem for a peer.			EXS		GDS	
-00				For all mathematical concepts, ideas and techniques: Represent it in a variety of ways (e.g. using concrete materials, pictures and symbols - the CPA approach). Make up his or her own examples (and non-examples) of it. See connections between it and other facts or ideas. Recognise it in new situations and contexts. Make use of it in various ways, including in new situations.		Solve problems of greater complexity (i.e. where the approach is not immediately obvious), demonstrating creativity and imagination. Independently explore and investigate mathematical contexts and structures.	
-00	Provide a convinced argument. Reflect on others' convinced explanations and use this to improve their work. Edit and improve their own and a peer's convinced explanation. Investigate 'what if?' questions. Create 'what if?' questions.			Describe it in his or her own words. Explain it to someone else.		Communicate results clearly and systematically explain and generalise the mathematics.	

	Week 1 - Week 2	Week 3 - Week 4	Week 5 - Week 7	Week 8 - Week 9	Week	- Week 11	Week 12 - Week 13
	Fractions	Measurement (money)	Measurement (time)	Geometry (shape)		stics	Consolidation
	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Add fractions Step 2 Subtract fractions Step 3 Partition the whole Step 4 Unit fractions of a set of objects Step 5 Non-unit fractions of a set of objects Step 6 Reasoning with fractions of an amount \qquad	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Pounds and pence Step 2 Convert pounds and pence Step 3 Add money Step 4 Subtract money Step 5 Find change Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Roman numerals to 12 Step 2 Tell the time to 5 minutes Step 3 Tell the time to the minute Step 4 Read time on a digital clock Step 5 Use am and pm Step 6 Years, months and days Step 7 Days and hours Step 8 Hours and minutes - use start and end times Step 9 Hours and minutes - use durations Step 10 Minutes and seconds Step 11 Units of time Step 12 Solve problems with time Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Turns and angles Step 2 Right angles Step 3 Compare angles Step 4 Measure and draw accurately Step 5 Horizontal and vertical Step 6 Parallel and perpendicular Step 7 Recognise and describe 2-D shapes Step 8 Draw polygons Step 9 Recognise and describe 3-D shapes Step 10 Make 3-D shapes Y3 POST ASSESSMENT and ADDRESS GAPS	Y2 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Interpret pictograms Step 2 Draw pictograms Step 3 Interpret bar charts Step 4 Draw bar charts Step 5 Collect and represent data Step 6 Two-way tables Y3 POST ASSESSMENT and ADDRESS GAPS		Y3 Summer Term Assessment
	Add and subtract fractions with the same denominator within one whole Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators	Add and subtract amounts of money to give change, using both $£$ and p in practical contexts	Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight Know the number of seconds in a minute and the number of days in each month, year and leap year Compare durations of events	Recognise angles as a property of shape or a description of a turn Identify right angles, recognise that two right angles make a half turn, three make threequarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle Measure the perimeter of simple 2-D shapes Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them Measure, compare, add and subtract: lengths $(\mathrm{m} / \mathrm{cm} / \mathrm{mm})$; mass $(\mathrm{kg} / \mathrm{g})$; volume $/$ capacity $(1 / \mathrm{ml})$ Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	Interpret using bar and table Solve one questions presente charts an tables	present data ts, pictograms and two-step g information caled bar tograms and	
	Engage with mathematical activities and problems, making links and moving between different representations (concrete, pictorial, abstract). Independently choose to scaffold thinking using concrete, pictorial or abstract representations, if required. Independently choose to represent thinking using concrete, pictorial or abstract representations, as appropriate. Independently find an efficient way to solve a range of problems. Independently work systematically. Independently find possibilities using patterns spotted to support. Independently check and improve work (e.g. look for other possibilities, repeats, missing answers, errors and ways to improve). Pattern spot and predict what will come next in a pattern/sequence (numbers, shape or spatial). Independently investigate conjectures and provide examples and counter-examples. When they have solved a problem, pose a similar problem for a peer.			EXS		GDS	
				For all mathematical concepts, ideas and techniques: Represent it in a variety of ways (e.g. using concrete materials, pictures and symbols - the CPA approach). Make up his or her own examples (and non-examples) of it. See connections between it and other facts or ideas. Recognise it in new situations and contexts. Make use of it in various ways, including in new situations.		Solve problems of greater complexity (i.e. where the approach is not immediately obvious), demonstrating creativity and imagination. Independently explore and investigate mathematical contexts and structures.	
	Provide a convinced argument. Reflect on others' convinced explanations and use this to improve their work. Edit and improve their own and a peer's convinced explanation. Investigate 'what if?' questions. Create 'what if?' questions.			Describe it in his or her own words. Explain it to someone else.		Communicate results clearly and systematically explain and generalise the mathematics.	

