	Week 1 - Week 4	Week 5 - Week 7	Week 8	Week 9 - Week 11		12 - Week 14	Week 15
	Place Value	Addition \& Subtraction	Measurement (area)	Multiplication \& Division A	Multi	tion \& Division	Consolidation
White Rose Small Steps	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Represent numbers to 1,000 Step 2 Partition numbers to 1,000 Step 3 Number line to 1,000 Step 4 Thousands Step 5 Represent numbers to 10,000 Step 6 Partition numbers to 10,000 Step 7 Flexible partitioning of numbers to 10,000 Step 8 Find 1, 10, 100, 1,000 more or less Step 9 Number line to 10,000 Step 10 Estimate on a number line to 10,000 Step 11 Compare numbers to 10,000 Step 12 Order numbers to 10,000 Step 13 Roman numerals Step 14 Round to the nearest 10 Step 15 Round to the nearest 100 Step 16 Round to the nearest 1,000 Step 17 Round to the nearest 10,100 or 1,000 Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Add and subtract 1s, 10s, 100 s and 1,000 s Step 2 Add up to two 4-digit numbers - no exchange Step 3 Add two 4-digit numbers one exchange Step 4 Add two 4-digit numbers more than one exchange Step 5 Subtract two 4-digit numbers - no exchange Step 6 Subtract two 4-digit numbers - one exchange Step 7 Subtract two 4-digit numbers - more than one exchange Step 8 Efficient subtraction Step 9 Estimate answers Step 10 Checking strategies Y4 POST ASSESSMENT and ADDRESS GAPS	Step 1 What is area? Step 2 Count squares Step 3 Make shapes Step 4 Compare areas Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Multiples of 3 Step 2 Multiply and divide by 6 Step 36 times-table and division facts Step 4 Multiply and divide by 9 Step 59 times-table and division facts Step 6 The 3, 6 and 9 times-tables Step 7 Multiply and divide by 7 Step 87 times-table and division facts Step 911 times-table and division facts Step 1012 times-table and division facts Step 11 Multiply by 1 and 0 Step 12 Divide a number by 1 and itself Step 13 Multiply three numbers Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSME Step 1 Factor pair Step 2 Use factor Step 3 Multiply by Step 4 Multiply by Step 5 Divide by 10 Step 6 Divide by 1 Step 7 Related fact Step 8 Informal w Step 9 Multiply a Step 10 Multiply a Step 11 Divide a 2 Step 12 Divide a 2 Step 13 Divide a 3 Step 14 Correspon Step 15 Efficient m Y4 POST ASSESSM	S multiplication and division en methods for multiplication git number by a 1-digit number digit number by a 1 -digit number it number by a 1-digit number (1) it number by a 1 -digit number (2) it number by a 1 -digit number nce problems iplication T and ADDRESS GAPS	Y4 Autumn Term Assessment
	Read and write numbers up to 1,000 in numerals and words (Y3) Recognise the place value of each digit in a 3digit number (hundreds, tens, ones) (Y3) Identify, represent and estimate numbers using different representations Count in multiples of 6, 7, 9, 25 and 1,000 Recognise the place value of each digit in a 4digit number (thousands, hundreds, tens and ones) Find 1,000 more or less than a given number Order and compare numbers beyond 1,000 Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value Round any number to the nearest 10,100 or 1,000	Add and subtract numbers with up to four digits using the formal written methods of columnar addition and subtraction where appropriate Solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why Estimate and use inverse operations to check answers to a calculation	Find the area of rectilinear shapes by counting squares	Recall multiplication and division facts for multiplication tables up to 12×12 Recognise and use factor pairs and commutativity in mental calculations Count in multiples of 6, 7, 9, 25 and 1,000 Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	Recognise and use mental calculation Recall multiplicati tables up to $12 \times$ Multiply and divid decimals by 10,100 Solve problems in including using the numbers by 1 digi correspondence p connected to m o Multiply 2-digit and number using form Use place value, k and divide mental dividing by 1 ; mult	artor pairs and commutativity in and division facts for multiplication hole numbers and those involving nd 1,000 (Y5) ing multiplying and adding, stributive law to multiply 2-digit teger scaling problems and harder lems such as n objects are ts -digit numbers by a 1-digit written layout wn and derived facts to multiply ncluding: multiplying by 0 and 1 ; ying together 3 numbers	
	Engage with mathematical activities and problems, making links and moving between different representations (concrete, pictorial, abstract). Independently choose to scaffold thinking using concrete, pictorial or abstract representations, if required. Independently choose to represent thinking using concrete, pictorial or abstract representations, as appropriate. Make suggestions of ways to solve a range of problems. Develop and apply a systematic approach. Find and predict possibilities that match the context using patterns spotted to support. Independently check and improve work (e.g. look for other possibilities, repeats, missing answers, errors and ways to improve). Pattern spot and with support, express generalisations/rules in words. Make and investigate conjectures and provide examples and counter-examples. When they have solved a problem, pose a similar problem for a peer.			EXS		GDS	
				For all mathematical concepts, ideas and techniques: Represent it in a variety of ways (e.g. using concrete materials, pictures and symbols - the CPA approach). Make up his or her own examples (and non-examples) of it. See connections between it and other facts or ideas. Recognise it in new situations and contexts. Make use of it in various ways, including in new situations.		Solve problems of greater complexity (i.e. where the approach is not immediately obvious), demonstrating creativity and imagination. Independently explore and investigate mathematical contexts and structures.	
	Provide a clear, correct, logical justification and with support, express generalisation/rules formed in words. Reflect on others' justifications and use this to improve their work. Edit and improve their own and a peer's justification. Investigate 'what if?' questions. Create 'what if?' questions.			Describe it in his or her own words. Explain it to someone else.		Communicate results clearly and systematically explain and generalise the mathematics.	

	Week 1 - Week 2	Week 3 - Week 6		Week 7 - Week 9		Week 10 - Week 11
	Measurement (length \& perimeter)	Fractions		Decimals		Consolidation
	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Measure in kilometres and metres Step 2 Equivalent lengths (kilometres and metres) Step 3 Perimeter on a grid Step 4 Perimeter of a rectangle Step 5 Perimeter of rectilinear shapes Step 6 Find missing lengths in rectilinear shapes Step 7 Calculate perimeter of rectilinear shapes Step 8 Perimeter of regular polygons Step 9 Perimeter of polygons Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Understand the whole Step 2 Count beyond 1 Step 3 Partition a mixed number Step 4 Number lines with mixed numbers Step 5 Compare and order mixed numbers Step 6 Understand improper fractions Step 7 Convert mixed numbers to improper fra Step 8 Convert improper fractions to mixed num Step 9 Equivalent fractions on a number line Ste fraction families Step 11 Add two or more fractions Step 12 Add fractions and mixed numbers Step 13 Subtract two fractions Step 14 Subtract from whole amounts Step 15 Subtract from mixed numbers Y4 POST ASSESSMENT and ADDRESS GAPS	ns S 0 Equivalent	Y3 PRE-ASSESSMENT and ADDRESS Step 1 Tenths as fractions Step 2 Tenths as decimals Step 3 Tenths on a place value chart Step 4 Tenths on a number line Step 5 Divide a 1-digit number by 10 Step 6 Divide a 2-digit number by 10 Step 7 Hundredths as fractions Step 8 Hundredths as decimals Step 9 Hundredths on a place value c Step 10 Divide a 1- or 2-digit number Y4 POST ASSESSMENT and ADDRESS		Y4 Spring Term Assessment
	Convert between different units of measure [for example, kilometre to metre; hour to minute] Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	Recognise and use fractions as numbers: unit fra fractions with small denominators (Y3) Recognise and show, using diagrams, families of fractions Add and subtract fractions with the same denom	ns and non-unit mmon equivalent ator	Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing 1-digit numbers or quantities by 10 (Y3) Recognise and write decimal equivalents of any number of tenths or hundredths Compare numbers with the same number of decimal places up to 2 decimal places Find the effect of dividing a 1 - or 2 -digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths Recognise and show, using diagrams, families of common equivalent fractions		
	Engage with mathematical activities and problems, making links and moving between different representations (concrete, pictorial, abstract). Independently choose to scaffold thinking using concrete, pictorial or abstract representations, if required. Independently choose to represent thinking using concrete, pictorial or abstract representations, as appropriate. Make suggestions of ways to solve a range of problems. Develop and apply a systematic approach. Find and predict possibilities that match the context using patterns spotted to support. Independently check and improve work (e.g. look for other possibilities, repeats, missing answers, errors and ways to improve). Pattern spot and with support, express generalisations/rules in words. Make and investigate conjectures and provide examples and counter-examples. When they have solved a problem, pose a similar problem for a peer.			EXS	GDS	
			For all mathematical concepts, ideas and techniques: Represent it in a variety of ways (e.g. using concrete materials, pictures and symbols - the CPA approach). Make up his or her own examples (and non-examples) of it See connections between it and other facts or ideas. Recognise it in new situations and contexts. Make use of it in various ways, including in new situations.		Solve problems of greater complexity (i.e. where the approach is not immediately obvious), demonstrating creativity and imagination. Independently explore and investigate mathematical contexts and structures.	
-	Provide a clear, correct, logical justification and with support, express generalisation/rules formed in words. Reflect on others' justifications and use this to improve their work. Edit and improve their own and a peer's justification. Investigate 'what if?' questions. Create 'what if?' questions.		Describe it in his or her own words. Explain it to someone else.		Communicate results clearly and systematically explain and generalise the mathematics.	

	Week 1 - Week 2	Week 3 - Week 4	Week 5 - Week 6		ek 7 - Week 8	Week 9		ek 10 - Week 11	Week 12 - Week 13
	Decimals	Measurement (money)	Measurement (time)		etry (shape)	Statistics		Geometry ition \& direction)	Consolidation
	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Make a whole with tenths Step 2 Make a whole with hundredths Step 3 Partition decimals Step 4 Flexibly partition decimals Step 5 Compare decimals Step 6 Order decimals Step 7 Round to the nearest whole number Step 8 Halves and quarters as decimals Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Write money using decimals Step 2 Convert between pounds and pence Step 3 Compare amounts of money Step 4 Estimate with money Step 5 Calculate with money Step 6 Solve problems with money Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Years, months, weeks and days Step 2 Hours, minutes and seconds Step 3 Convert between analogue and digital times Step 4 Convert to the 24 -hour clock Step 5 Convert from the 24-hour clock Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Understand angles as turns Step 2 Identify angles Step 3 Compare and order angles Step 4 Triangles Step 5 Quadrilaterals Step 6 Polygons Step 7 Lines of symmetry Step 8 Complete a symmetric figure Y4 POST ASSESSMENT and ADDRESS GAPS		Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Interpret charts Step 2 Comparison, sum and difference Step 3 Interpret line graphs Step 4 Draw line graphs Y4 POST ASSESSMENT and ADDRESS GAPS	Y3 PRE-ASSESSMENT and ADDRESS GAPS Step 1 Describe position using coordinates Step 2 Plot coordinates Step 3 Draw 2-D shapes on a grid Step 4 Translate on a grid Step 5 Describe translation on a grid Y4 POST ASSESSMENT and ADDRESS GAPS		Y4 Summer Term Assessment
	Recognise and write decimal equivalents of any number of tenths or hundredths Solve simple measure and money problems involving fractions and decimals to 2 decimal places Compare numbers with the same number of decimal places up to 2 decimal places Round decimals with 1 decimal place to the nearest whole number Recognise and write decimal equivalents to $1 / 4,1 / 2$ and $3 / 4$	Estimate, compare and calculate different measures, including money in pounds and pence	Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days Read, write and convert time between analogue and digital 12and 24 -hour clocks	Recog shape Identif and com to two Comp shape triang and siz Identif shape orient Compl with r symm	angles as a property of description of a turn (Y3) ute and obtuse angles re and order angles up t angles by size nd classify geometric luding quadrilaterals and ased on their properties es of symmetry in 2-D sented in different s simple symmetric figure t to a specific line of	Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	Descr coor Plot to co Desc posit unit	positions on a 2-D grid as tes in the first quadrant cified points and draw sides ete a given polygon movements between as translations of a given left/right and up/down	
	Engage with mathematical activities and pictorial, abstract)	roblems, making links and moving	different representations (conc			EXS			
	Independently choose to scaffold thin Independently choose to represent th Make suggestions of ways to solve a r Develop and apply a systematic appro Find and predict possibilities that match Independently check and improve wo Pattern spot and with support, express Make and investigate conjectures and When they have solved a problem, po	ing using concrete, pictorial or abstract king using concrete, pictorial or abstra nge of problems. ch. the context using patterns spotted to (e.g. look for other possibilities, repeats, generalisations/rules in words. provide examples and counter-example e a similar problem for a peer.	resentations, if required. epresentations, as appropriate. port. missing answers, errors and ways to im	rove).	For all mathematical con Represent it in a variety materials, pictures and s Make up his or her own See connections betwee Recognise it in new situa Make use of it in various	epts, ideas and techniques ways (e.g. using concrete mbols - the CPA approach). xamples (and non-examples) it and other facts or ideas. ons and contexts. ways, including in new situ) of it. ions.	Solve problems of greater approach is not immediate creativity and imagination. Independently explore and contexts and structures.	mplexity (i.e. where the obvious), demonstrating vestigate mathematical
	Provide a clear, correct, logical justific Reflect on others' justifications and us Edit and improve their own and a pee Investigate 'what if?' questions. Create 'what if?' questions.	tion and with support, express generalis this to improve their work. s justification.	ion/rules formed in words.		Describe it in his or her Explain it to someone	words.		Communicate results cle and generalise the mathe	and systematically explain ics.

